

Suspension Design Considerations: DSA vs SSA

Peter Hahn K.C. Ee Amaninder Dhillon

About MPT

Business: Suspensions for HDD

Founded: 1984

Facilities:

Thailand Wangnoi Rojana China Chang-an, Dong-guan U.S.A. Murrieta, California

Corporate Info: Headquarters – Wangnoi, Thailand www.magnecomp.com

Wangnoi

Rojana

Chang-an, China

Contents

- Overview
- DSA Types
- Requirements: DSA vs SSA
- Stroke and FRF of DSA vs SSA
- Cleanliness
- Other DSA Considerations
- Summary

Why DSA?

- Enterprise drives improved throughput performance with DSA
- With multiple-platter designs of 3.5" and 2.5", 400k+ tpi is not easily manageable in meeting TMR budget and various performance targets
- BPI improvement is much more difficult now
- Industry largely exhausted more economical improvement solutions for TPI improvement
 - servo technology
 - butterfly mode control, spindle stability, windage control, dampers etc
 - DSA's turn now
- In the long run, DSA also supports high TPI required for SMR, BPM and EAMR/HAMR
- DSA is rapidly becoming the standard for new drive products

DSA Adoption Trend

 The on-and-off predictions and experimental implementations turned into a stable migration trend now

DSA Types

Dual PZT on MP

Single PZT on LB

PZT's in Gimbal Area (shown photo above: CAT)

Platform	PZT's on Mountplate	PZT	Two PZT's in Gimbal
	(MP Based DSA)	on Loadbeam (LB Based DSA)	(Gimbal Based DSA)
Application	All	Desktop/Enterprise	All
Advantages	Higher lift-off shock	Less arm mode coupling	Very little arm mode coupling
Limitations	Arm mode coupling	Lift-off shock is not suitable for notebooks	Need slider-rotational type Design optimization is challenging

- Most common DSA style for new products today is Dual PZT on MP
- MP based DSA pushes servo BW from SSA's mid/high 1000 to mid 2000 or higher
- Gimbal based rotational type or other improved type of DSA will become a necessity when MP based DSA servo BW is not sufficient
- The rest of this discussion focuses on Dual PZT on MP

Dual PZT on MP DSA Example - views

- Example shown
 - 11 mm length: swage boss to gimbal dimple
 - 5.7 mm Loadbeam length
 - 30 um LB thickness
 - 100um PZT thickness

Performance Requirement List – SSA vs DSA

	SSA	DSA	
Dyanmics	FRF	FRF	
Shock	Op shock	Op shock	
SHOCK	Non-op shock	Non-op shock	
Stability	Gram stability	Gram stability	
Stability	Static attitude stability	Static attitude stability	
	Circuit corrosion	Circuit corrosion	
Environmental Stability		PZT electrical grounding	
(temp/humidity/voltage)		PZT depoling margin	
		DSA stroke	
	LPC	LPC	
Contamination	SST particles	SST particles	
		PZT particles	

• In addition to the apparent construction difference, the addition of PZT motor function presents more performance items to consider

Typical Design Parameters

Description	Unit	SSA	DSA
Loadbeam Thickness	um	25 to 100	25 to 30
Mountplate Thickness	um	150-170	150 mostly ¹
Dimple to MP edge	mm	up to 7	5.8 max desirable ²
Free-state Angle	deg	12-14	12-14
1 st Bending Resonance	kHz	5 to 6	5 to 6 ³
1 st Torsion Resonance	kHz	7 to 8.5	7 to 8.5 ³
Sway Resonance	kHz	20 to 25	18 to 22 ³
Hinge Stiffness (Kv)	N/m	20 to 24	20 to 24
Lifter Stiffness	N/m	800 -1300	800 -1300
Static Lift-off Shock	G's/gramf	300-350	300-350
DSA Stroke	nm/V	n/a	10 to 25

Notes:

- **1.** Allows common DSA Motor design for multiple form factors
- 2. Allows space for PZT in Mountplate
- 3. Generally, DSA has lower frequency

MAGNECOMP PRECISION TECHNOLOGY

DSA fundamental

Approximating stroke based on static analysis

Stroke and Sway

The Support Structure and PZT size/location greatly affects stiffness, stroke and sway

LB Length Effect – LB Shorter for PZT Motor

PRECISION TECHNOLOGY

- More interactions between LB and MP
- T2 and T3 become more challenging to control
- Once PZTs are added, structure is somewhat strengthened

PZT Stress

Thicker PZT lowers the stress on PZT, but lowers the stroke

10

- The tensile strength of PZT is about 80 MPa. \rightarrow about 100% safety margin with this example
- Needs to verify for the worst case of gramload, applied voltage and op shock.

DSA - Major Mode Shapes

5.7mm LB, 30um thick

Cleanliness Consideration

PZT is constructed much like concrete

Mix of various materials is cured

Slab is cut to pieces (wafer to dies)

Good in compression mode and not optimal in tension mode

On the cut surfaces, loose grains or particles may be developed, unless treated properly

PZT Encapsulation Approaches

	Epoxy Filling. Suspension Level	Epoxy on Cut Edge. PZT Level	Thin Polymer Coating, PZT Level	Anti-release Material on Cut Face
Patent No	n/a	6,703,767 (MPT)	6,930,861	2002/14815
Description	Epoxy applied to the cut edges after attaching PZTs to suspension body	Epoxy is filled in the gap before dicing PZTs	Thin polymer coating of all PZT surfaces	Vapor Coating of Dysan film
Construction	Add encap material on PZT side walls	Make gaps and fill them with epoxy	38a 50a 46 52 49 50b 48	
Remarks	Provides effective sealing of side walls	 Allows more DSA design flexibility Simpler suspension manufacturing process. 		

MPT supports the first two types of encapsulation in DSA designs

Other Considerations

- 1. Not all piezoelectric materials are suitable for HDD
 - Ultra high d31 PZT's (>350 pm/V), Single crystal PZT's and polymer based piezo (PVDF) have very low Curie temperature
- 2. Short term temperature exposure for process handling, with typical HDD-grade PZT's:
 - 160°C for DSA
 - (~220°C for SSA suspensions)
- 3. PZT grounding by conductive epoxy on SST
 - Connection resistance can be reduced by applying electric current through the epoxy interface depending on bond joint features
 - Other solutions are available including added gold plated strip or gold plated mountplate
- 4. Stroke Sensitivity to driving voltage condition must be verified under long term THB testing

Summary

- HDD industry is transitioning to DSA rapidly
- MP based DSA is most common and Dual PZT on Mountplate is widely used currently
- Addition of PZT motors makes the DSA suspensions behave differently from the SSA type
- DSA design requires careful balancing of Performance and Reliability in FRF, Stroke, Cleanliness and Stability

Magnecomp Precision Technology

- Prepared to support transition to DSA
- Ramping up DSA products to high volume
- Can assist in DSA designs and improving reliability for DSA implementation
- Contact Information
 - Peter Hahn: phahn@magnecomp.com

Thank you

